Dissection of zebrafish shha function using site-specific targeting with a Cre-dependent genetic switch

نویسندگان

  • Kotaro Sugimoto
  • Subhra P Hui
  • Delicia Z Sheng
  • Kazu Kikuchi
چکیده

Despite the extensive use of zebrafish as a model organism in developmental biology and regeneration research, genetic techniques enabling conditional analysis of gene function are limited. In this study, we generated Zwitch, a Cre-dependent invertible gene-trap cassette, enabling the establishment of conditional alleles in zebrafish by generating intronic insertions via in vivo homologous recombination. To demonstrate the utility of Zwitch, we generated a conditional sonic hedgehog a (shha) allele. Homozygous shha mutants developed normally; however, shha mutant embryos globally expressing Cre exhibited strong reductions in endogenous shha and shha target gene mRNA levels and developmental defects associated with null shha mutations. Analyzing a conditional shha mutant generated using an epicardium-specific inducible Cre driver revealed unique roles for epicardium-derived Shha in myocardial proliferation during heart development and regeneration. Zwitch will extend the utility of zebrafish in organ development and regeneration research and might be applicable to other model organisms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TAILOR: Transgene Activation and Inactivation Using Lox and Rox in Zebrafish

The ability to achieve precisely tailored activation and inactivation of gene expression represents a critical utility for vertebrate model organisms. In this regard, Cre and other site-specific DNA recombinases have come to play a central role in achieving temporally regulated and cell type-specific genetic manipulation. In zebrafish, both Cre and Flp recombinases have been applied for inducib...

متن کامل

Temporally-Controlled Site-Specific Recombination in Zebrafish

Conventional use of the site-specific recombinase Cre is a powerful technology in mouse, but almost absent in other vertebrate model organisms. In zebrafish, Cre-mediated recombination efficiency was previously very low. Here we show that using transposon-mediated transgenesis, Cre is in fact highly efficient in this organism. Furthermore, temporal control of recombination can be achieved by us...

متن کامل

Tracking germinal center B cells expressing germ-line immunoglobulin gamma1 transcripts by conditional gene targeting.

Germinal centers (GCs) represent the main sites for the generation of high-affinity, class-switched antibodies during T cell-dependent antibody responses. To study gene function specifically in GC B cells, we generated Cgamma1-cre mice in which the expression of Cre recombinase is induced by transcription of the Ig gamma1 constant region gene segment (Cgamma1). In these mice, Cre-mediated recom...

متن کامل

Ligand-activated site-specific recombination in mice.

Current mouse gene targeting technology is unable to introduce somatic mutations at a chosen time and/or in a given tissue. We report here that conditional site-specific recombination can be achieved in mice using a new version of the Cre/lox system. The Cre recombinase has been fused to a mutated ligand-binding domain of the human estrogen receptor (ER) resulting in a tamoxifen-dependent Cre r...

متن کامل

CRISPR/Cas9-loxP-Mediated Gene Editing as a Novel Site-Specific Genetic Manipulation Tool

Cre-loxP, as one of the site-specific genetic manipulation tools, offers a method to study the spatial and temporal regulation of gene expression/inactivation in order to decipher gene function. CRISPR/Cas9-mediated targeted genome engineering technologies are sparking a new revolution in biological research. Whether the traditional site-specific genetic manipulation tool and CRISPR/Cas9 could ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2017